
Docs for the https://wintergarten.mitkov-systems.de/ project.

Overview

Wintergarten Docs

https://wintergarten.mitkov-systems.de/


The essence of the project is two-way communication over MQTT for the control of a winter garden
device, which controls things like temperature, fans, and others. Note that all communication over
MQTT is encrypted with AES-256-ctr. In this doc, messages are shown decrypted.

The communication is actually done through an HMI (human-machine interface) device, which
relays the commands to the actual device.

The HMI's interface is replicated in this web app as well, so you can control it from here too. Also, if
someone is using the actual HMI and has the web app opened, both UI's are synchronized.

In this project the replicated HMI has the following options (which the user can change):

min. temp - when mode is auto, you can change the min. temp through the plus and
minus buttons
fan - this is the setting of the main fan, and you can change it through the plus and minus
buttons if the mode is set to manual
mode - you can choose between 'auto' and 'manual'
aktive zuluft - I believe this controls the secondary fan with options from 0 to 6 (need to
confirm this with Marto)
on/off - when off, the user can't change the other options of the HMI

Aktive zuluft has a timeout (in seconds) specified by zuluftRT in the payload. When this number is
bigger than 0, it starts to countdown the seconds after which aktive zuluft is switched off.

There is also a timeout when the mode is manual, after which it switches to auto. Specified by
stateRT in the payload. However, this is not implemented in the app atm.

Overview

HMI

Aktive Zuluft Timeout

Mode Timeout

Except for the Dashboard, there are two
other pages: Settings and Current



Allows you to update the following settings:

Max temp
Min pwm
Max pwm
Unique ID - this updates in unique ID of the device associated with that user in the web app. Used
to subscribe to the device specific topics on MQTT
zulutfT
Periphery

Allows you to change the following:

Temp in
Temp out
Fan 1 pwm
Fan 2 PWM

The app listens on two MQTT topics: /v3/rt/<device-unique-id>/settings and /v3/rt/<device-
unique-id>/payload

On the payload topic, we expect messages similar to this one (note this is requested by the
fetchPayload command):

Values
Settings 

Current Values

Full range of options along with some helpful comments you can see in
the 'state.js' file in the project's files - look at the beginning.

MQTT topics

[{"unique_id":"D8132A859750","hw_ver":"1.2.3","fw_ver":"2.3.4","bl_ver":"5.6.7","hmi_hw_ver":"8.9.10","hmi_fw
_ver":"11.12.13"},{"channel":0,"type":"temp_in","unit":"°C","data":[{"value":28.2}]},{"channel":1,"type":"temp
_out","unit":"°C","data":[{"value":27.9}]},{"channel":2,"type":"fan","unit":"%","data":[{"value":50}]},{"channel
":3,"type":"fan","unit":"%","data":[{"value":0}]},{"channel":4,"type":"valve","unit":"","data":[{"value":1}]},{"ch
annel":5,"type":"valve","unit":"","data":[{"value":1}]},{"channel":6,"type":"valve","unit":"","data":[{"value":0}]
},{"channel":7,"type":"mode","unit":"","data":[{"value":1}]},{"channel":8,"type":"stateRT","unit":"sec","data":[
{"value":101}]},{"channel":9,"type":"zuluftRT","unit":"sec","data":[{"value":1}]},{"channel":10,"type":"errors",
"unit":"","data":[{"value":0}]}]



On the settings topic, we expect messages similar to this one (note this is requested by the
fetchSettings command):

There is another topic: /v3/rt/<device-unique-id>/commands - here we send commands from
the web app to the HMI. These look like this:

On this topic, we also receive responses that look like this:

Note that multiple commands are combined into one, e.g, here we have 'settings', 'fetchSettings
', and 'fetchPayload' commands.

Commands, also have "token" and "status" fields, the token is used to recognize responses from
the device when commands have finished executing successfully, so we know these commands
have been successful, and we note that in the database. For successful commands, the status must
be "done".

There is a NodeJS mqtt forwarder which listens for messages on the commands topic and forwards
them to the backend so their status can be updated in the db. This mqtt forwarder project is
located at: /var/www/mqtt_forwarder2http-wintergarten on the server.

{"periphery":1,"minTemp":28,"maxTemp":33,"minPWM":50,"maxPWM":89,"zuluftT":9,"noise":4,"aktivezuluft":0}

{"token":"bBm9FMLG","status":"pending","settings":{"minTemp":29},"fetchPayload":{"values":1},"fetchSetting
s":{}}

{"token":"bBm9FMLG","status":"done"}


